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ABSTRACT. This paper is dealing with the oscillatory properties of first order
delay neutral impulsive differential equations and corresponding to them inequal-
ities with constant coefficients. The established sufficient conditions ensure the
oscillation of every solution of this type of equations.
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1. Introduction

Impulsive differential equations with deviating arguments (IDEDA) are adequate mathematical
models for the simulation of processes that depend on their history and are subject to short-time
disturbances. Such processes occur in the theory of optimal control, theoretical physics, pop-
ulation dynamics, biotechnology, industrial robotics, etc. In contrast to the theory of ordinary
impulsive differential equations (see, [1] - [3] and [20] ) and differential equations with deviating
arguments (see, [11], [13], [14]and [18]), the theory of IDEDA admits some theoretical and practi-
cal difficulties. We note here that [12] is the first work where IDEDA were considered. For more
results, concerning IDEDA, we choose to refer to [4]-[6],[8],[23] and [24]. Much less we know about
the neutral impulsive differential equations, i.e. equations in which the highest-order derivative
of the unknown function appears in the equation with the argument t (the present state of the
system), as well as with one or more retarded and/or advanced arguments (the past and/or the
future state of the system). Note that equations of this type appear in networks, containing
lossless transmission lines. Such networks arise , for example, in high speed computers, where

lossless transmission lines are used to interconnect switching circuits (see, [7] and [21]).

As it is known (see [11]), the appearance of the neutral term in a differential equation can

cause or destroy the oscillation of its solutions. Moreover, the study of neutral differential equa-
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tions in general , presents complications which are unfamiliar for non-neutral differential equa-
tions. As far as for a discussion on some more applications and some drastic differences in behavior

of the solution of neutral differential equations see, for example, [15],[16] and [22].

2. Preliminaries

In this article we consider the first order delay neutral impulsive differential equation with constant

coefficients of the form
d
W) —cyt=R) +qy(t—0) =0, t £ 7% (E1)

Aly(re) = cy(mi — h)] + pry(tk —0) =0, k€ N

as well as the corresponding to it inequalities
d
~[y(®) —cy(t— B +qy(t —0) <O, t £ 7 (N1.)

Aly(te) — ey(mi — )] + pry(Te —0) <0, kEN

and
Z1(0) — eyt~ W]+ ay(t—) 20, t £ 7y (M)

Aly(me) — ey(rs — )] + pry(me —0) 20, ke N
where c € (0,1), g, pi, € [0,+00),k € N and h, 0 € (0, +00).

Moreover, we consider a special case of the equation (E;) and the corresponding to it in-

equalities which are of the form
v(t)+qy(t—o)=0, t# 7 (B)
Ay(me) + pey(te —0) =0, ke N
y'(t) +qy(t—o) <0, t £ 74 (No.<)
Ay(Ti) + pry(1s —0) <0, ke N
and
y'(t) +ay(t— o) 20, t # 7 (Na.>)
Ay(me) + pry(me — o) >0, k€ N
respectively.

Here the deviations h and/or ¢ are positive constants and 7, € (0, +00),k € N are fixed
moments of impulsive effect (the jump points), which we characterize as down-jumps when Az (1)

<0, k€ N and as up-jumps when Az(r;) >0, k€ N.
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Denote by PC(R, R) the set of all piecewise continuous on the intervals (7x, Tk41], &K € N
functions u: R — R which at the jump points 7,, & € N are continuous from the left, i.e.
u(ty — 0) = lim¢—r, —o u(t) = u(7%), and may have discontinuities of first kind at the jump points
L, k€ N.

Suppose that the fixed moments of impulsive effect (the jump points) 75, £ € N have the

properties
=< << . < < ,..,klim Tk = oo, max {741 — Tk} < +o0, K EN
—+-00
Moreover, the following notions will be used throughout this paper.

A continuous real valued function w defined on an interval of the form [a, +00) eventually has

some property if there is a number b > a such that u has this property on the interval [b, +c0).

Let p = max{o, h}. We will say that a function y(¢) is a solution of Eq.(F1), if there exists
a number Ty € R such that y € PC([Ty — p, +o0], R), the function z(t) = y(t) — cy(t — h) is
continuously differentiable for ¢ > Tp, t # 7, k € N and y(t) satisfies Eq.(E1) for all t > Tg.

Furthermore, our results here pertain only to the nontrivial continuable solutions y(t) of the
equation (E1), i.e. y(t) is defined on an interval of the form [Ty, +o0) for some T, > Tp and

sup{|y(t)|: t > T} > 0foreach T > T,,.

Such a solution of Eq.(E4) is called regular. A regular solution y(t) of Eg¢.(E1), is said to be
nonoscillatory, if there exists a number ¢y > 0 such that y(t) is of constant sign for every t > tp.
Otherwise, it is called oscillatory. Also, note that a nonoscillatory solution is called eventually
positive (eventually negative), if the constant sign that determines its nonoscillation is positive
(negative). Equation (E;) is called oscillatory, if all its solutions are oscillatory. Otherwise, it is

called nonoscillatory.

In what follows we will consider Eq.(E), only in the cases, where it is a neutral (h # 0, ¢ #
0) and an impulsive (p; # 0 or p, = 0 with 7441 — 7 = h, k € N) differential equation
with two different deviations (¢ # 0, h # 0, ¢ # h) or with a single deviation (¢ = h # 0). So,
in what follows, without further mention, we will assume that

c€ (0,1), g,pg € [0,+00),k € N and h,o € (0, +0cc)

Finally, in this article, when we write a functional expression, we will mean that it holds for all
sufficiently large values of the argument.

Our aim is to establish sufficient conditions under which the equation (E,) is oscillatory.

To this end, we need the following two lemmas.

The first lemma (see, [9],[10] and[13]) describes the asymptotic behavior of the functions
z(t) = y(t) — cy(t — h) and y(t), where y(t) is an eventually positive solution of Eq.(E1).
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Lemma 1 Let y(t) be an eventually positive solution of Eq.(E;). Then:
(a) 2(t) > 0 for all large t with imy_. o0 2(t) = 0 and lim,, 4o [Az(7)] = 0;

(b) Hmt—>+oo y(t) = O and ]-im'rk—>+oo IAy(Tk)l =i},

Lemma 1, applied to the differentiable function z(t) = y(t) — cy(t — k) and to twice differen-
tiable function w(t) = z(¢) — c2(t — h), where y(t) is an eventually positive solution of Eq.(E;),

leads to the following proposition which is useful for our purposes.

Lemma 2 Let y(t) be an eventually positive solution of Eq.(E1). Then the functions #[L) =
y(t) — cy(t — h) and w(t) = 2(t) — cz(t — h) are also solutions of Eq.(E,) with the properties:

(a) z(t) > 0, 2/(t) < 0 eventually and

tmlali-noo Bt = D,Tkhﬁlw |Bztre)] =0;

(b) w(t) > 0, w'(t) <0 and w"(t) > 0 eventually and

t—ligloo w(t) = O,Tk]i)nim |Aw(T)| = 0.

Proof. As the negative of a solution of (E)) is also a solution of the same equation, it suffices
to prove the lemma for an eventually positive solution y(t) of (E;). Thus, assume, for the sake
of contradiction, that y(t) is an eventually positive solution of (E;). Then, since the equation
(E1) is an autonomous one, it follows that y(t — k) is also a solution of (E1). Therefore, 2(t) as a
linear combination of solutions of (E) is itself a solution of (E,). By similar arguments we easily
conclude that w(?) is also a solution of (£;). Now, using Lemma 1, it is easy to see that for all
large ¢

2(t) >0, 2/(t) <0

and that

tl}_’r{}oo E(L) = O,Tkl_l)n;m |AZ{w) | =0

By the same manner we conclude that for all large ¢
w(t) >0, w'(t) <0and wt)” = [2(t) —cz(t — h)] = —q2/(t—0) >0, t £ 7,

and that
lim w(t) =0, lim |Aw(r)|=0.

t—+4o00 Tp—+00

This completes the proof of the lemma.
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3. Oscillation of all solutions of (E»)

The results of this section will be used in the study of the oscillatory properties of (£7) and the

corresponding to it inequalities (N7 <) and (N7>) respectively.

Consider the first order ordinary impulsive delay differential equation (E3) and the corre-

sponding to it inequalities (N3 <) and (N2 >), which are special cases of the equation (E1).

Note that, as it is well-known (see, for example, [20] and [18]), a necessary and sufficient con-
dition for the oscillation of all solutions of the delay differential equation (Es), without impulsive
effects, is that go > % On the other hand, if the condition go < % holds, then, according to
a result in [17] (see also [18]), the delay differential equation (E3), without impulsive effects, is
non-oscillatory. Our results below, demonstrate the influence of impulsive effects on the behavior
of solutions of (E3). Indeed, Corollary 1 below shows the fact that the delay differential equation

(E5), subject to impulsive effects, is oscillatory even in the case, where go < %

Theorem 1 Assume that

lim inf(qo+ Z pr) = 1.

t 00
T t—o<7, <t

Then:
(a) the equation (E») Is oscillatory;
(b) the inequality (N2 <) has no eventually positive solutions;

(c) the inequality (N3 >), has no eventually negative solutions.

Proof. Since the proofs of (a),(b) and (c) can be carried out by similar arguments, it suffices
to prove only the case (a). To this end, as in the proof of Lemma 2, we assume that y(t) is an
eventually positive solution of (E3). Then there exists a tp > 0 such that y(t) > 0 for every t > tg.
Also, there is a t1 > to+o such that y(t—o) > 0, ¥/(¢) < 0 and Ay(7x) = —pry(T—0) <0, k€ N
for every t > t1. That means that y is decreasing function with down-jumps (Ay(7x) < 0), k € N.

Integrating (E2) from t — o to t, we find

WO -yit-o)- X Ayl + [

t
qy(s — o)ds = 0.
t—o <7<t =

Remark that, because y(t) is a positive decreasing function of ¢ , from last equality we derive

—ylt—o)+ > mylmk— o) +goy(t—o) <0. (1)
t—o<7 <t

as well as

y(e—0) >y(t—0o) >0, when, —0o <t—o.
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Hence, (1) yields
y(t—o)(—1+go + Z pp) <0

t—o<TR<t
and finally we conclude that

qo + Z D < 1.
t—o<7 <t

But the last inequality contradicts our assumptions and the conclusion of the theorem is evident.

As a consequence of the above theorem, we have the following important

Corollary 1 Let 0 < go < % and assume that liminf 55 pp > 1.
t=too o<, <t

Then the conclusion of Theorem 1 holds.

We conclude this section with the following

4. Oscillation of all solutions of Eq. (£}).

Having in mind the results of the previous section, we establish our main result which ensure the

oscillation of all solutions of the equation (E1).

Theorem 2 Assume that o > h and that

ltiminf [g(c — h) + Z pk) = 1—c.
i t—(o—h) <<t

Then:
(a) the equation (1) is oscillatory;
(b) the inequality (2) has now eventually positive solutions;

(c) the inequality (3) has no eventually negative solutions.

Proof. As in the proof of Theorem 1, we prove only the case (a). To do that, as in the
proof of Lemma 2, we assume, for the sake of contradiction, that Eq. (E1) has an eventually
positive solution y(¢). Then there exists a tp > 0 such that y(t) > 0 for every t > ty. Also, there
is a i3 > to+ o such that y(t — o) > 0, y'(t) < 0 and Aly(7) — cy(ri — k)] = —pey(7e — 0) <
0, £k € N for every t > t;. Now, by Lemma 2, it follows that for every t > ¢; the functions
z(t) = y(t) — ey(t — h) > 0 and w(t) = z(t) — cz(t — k) > 0 are solutions to the equation (E1).
That is, w(t) satisfies the equation

%[w(t) —cw(t—h)]+quw(t—0o)=0, t#m, (2)
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Alw(tg) — cw(my — h)] +ppw(tp, —0) =0, kEN

Note that, by Lemma 2, w(f) is an eventually positive strongly decreasing, while w'(t) is an

eventually negative strongly increasing function. Therefore, it is easy to see that

w(t—h)—cw'(t—h)+qu(t—o+h) < W(t)—cw'(t—h)+qu(t—o)
gg[w(t) —cw(t—h)]+quw(t—0o)=0 (3)

Moreover, since z(t) is a decreasing function, we see that z(7, — o) < 2(7; — ¢ — h) and so,

using the definitions of the functions z(t) and w(t), it is easy to conclude that

Aw(rg) = —ppz(T, —0) > —prz(Tk —0 — h) = Aw(rp, — h), k€N

So, in view of the above observation, from (2) it follows that for each k € N

Aw(ty — h) — cAw(t, — h) + prw(te — o+ h) < Aw(rg) — cAw(ry — h) + prw (i — o)
= Alw(rg) — cw(ry — h)] +prw(ty — o) =0 (4)

Now, by (3) and (4) , it follows that w(t) is an eventually positive function for which
(1—c)uw'(t—h)+quw(t—o+h) <0, t#7
(1—c)Aw(t, —h) + prw(t, — o+ h) <0, ke N
Hence, we conclude that w(t) is an eventually positive solution to the inequality

w’(t)—!—%w(t—a—f—h) <0, t 7, (5)

Aw(ry) + IPT‘“Cw(Tk —6+h) <0, keN
which is a contradiction. Indeed, the inequality (5) is of the form (Ns <). But, by Theorem 1(b),
the inequality (5) can not have eventually positive solutions.

The proof of the theorem is complete.

As consequences of the above theorem, we formulate the following propositions, the first of

which is an analogous to Corollary 1.

Corollary 2 Assume that 0 < g(oc — k) < 1 and that

i 2 mEl-G
t—(o—h)<T <t

Then the conclusion of Theorem 2 holds.
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Corollary 3 Assume that q(c — h) > 1 and that
e 1
lim inf E pr=>1—c——.
e
t“(oﬁh)é’i‘kst

Then the conclusion of Theorem 2 holds.
Next will be the result in the case of single deviation of Eq.(E).

Theorem 3 Assume that ¢ = h and that

lggl_&ilof [gh + Z Pkl = 1+ec.
t<m<t+h

Then Eq. (E4) is oscillatory.

Proof. Let, for the sake of contradiction, y(¢) be an eventually positive solution solution
of the equation (E;). Then, in view of Lemma 2, the function z(t) = y(t) — ey(t — h) and
w(t) = 2(t) — cz(t — h) are eventually positive solutions to the equation (Ej). That is, w(t)
satisfies

fw(t) — cw(t — )] +qu(t—h) =0 ¢ £ 7 (6)

/_\{w(ﬁc) = C’LU(T;; — h}] +pkw(’rk —h)=0, ke N.

Integrating Eq. (6) from ¢ to t + h, we obtain

t+h
w(t + h) — w(t) — cfw(t) — w(t— k)] + Z prw(TE — h) + q/ w(s — h)ds = 0,
t<rp<t+h &

and equivalently

w(t+h) —w(t) - cw(t) —wt—h)]+ > prw(re—h)+ghwt+h—h)<0. (7)
t<Tp<t+h
Since w(t) is a decreasing function of t, we see that w(7, — h) > w(t) for t < 7, < ¢t + h and so,

from (7) we derive

w(t)(~1—c+ Y pr+gh) <0,
t<r. <t-+h

which implies that

qgh + Z e <l+c
t<T <t+h

The obtained contradiction proves the theorem.

As a consequence of the above theorem, we formulate the following proposition, that is an

analogous to Corollary 1.
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Corollary 4 Assume that 0 = h and 0 < gh < % and that

lgginf Z b L4+6
t<rm.<t+h

Then:
(i) the equation (1) is oscillatory;
(ii) the inequality (2) has no eventually positive solutions;

(iii) the inequality (3) has no eventually negative solutions.
We conclude with an example, which illustrates Theorem 3 and its Corollary 4.

Example 1 The neutral impulsive differential equation with 7o — T =1, k€ N
1
[y(®) — 5y -1 =0, t#m

Aly(ry) — %y(m 1] gy(m -1)=0,k€EN,

for every t > 19 = 0 satisfies the assumptions of Corollary 4 of Theorem 3, i.e.

(3] (9%}

liminf[gh+ S pi]=1+c whereo=h=1,9g=0,c=%, pr=p=
t—too t< <t+h

Hence, it has only oscillatory solutions. It is obvious that these solutions will be in the form
of piece-vice constant functions y(t) = Ay, for t € (1g—1,7k), £ € N, t > 179 = 0 with initial
function

(,O(t) =Ag, te [TO — 1,’1‘0,}, Ay e R

where the "pulsatile” coefficients A}, are determined by the difference scheme
1 3
Aly(re) = 5y(m = D]+ 5y(me —1) =0,k € N,

e, App1 =y(Te41) = (14 c)Ax — (p+ ¢) Ak-1,

where

A1 =y(m—1), Ap=y(m), A-1= Ao
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